term "recharge areas" refers to those portions of the land surface where surface

water (precipitation, surface runoff, streams, rivers, and lakes) enters the subsur-

Oklahoma's bedrock aquifers are widespread in distribution and differ in com-

position. Most of the aquifers are sands or sandstones (Ogallala, Antlers, Elk City,

Noxie aquifers), some are mainly limestones or dolomites (Keokuk-Reeds Spring,

Roubidoux-Gasconade-Eminence, Simpson-Arbuckle, and Arbuckle-Timbered

Hills aquifers), one is predominantly gypsum (Blaine-Dog Creek aquifer), and one

is mainly novaculite and chert (Arkansas Novaculite-Bigfork aquifer). The aquifers

range in thickness from 100 to several thousand feet. The depths at which fresh

ground water can be obtained range from less than 100 feet in some aquifers to

Fresh water stored in Oklahoma's bedrock aquifers results from downward

movement of surface waters that have entered each of the aquifers at its recharge

areas and displaced any saline waters that originally may have occupied that

portion of the aquifer. The system is dynamic inasmuch as these aquifers are still

more than 1,000 feet in others.

Rush Springs-Marlow, Cedar Hills, Garber-Wellington, Oscar, Vamoosa-Ada, and

face and eventually migrates downward to the zone of saturation in an aquifer.

Cartography by David M. Deering

recharge may occur where the confining strata contain one or more of the follow-

ing: (1) continuous or discontinuous layers with higher permeability, (2) joints,

fractures, faults, or other structural discontinuities, and (3) boreholes, mine shafts,

or other man-made excavations. Any of these natural or artificial features that

penetrate the confining strata into the underlying aquifer represent a potential

Known or potential recharge areas for the various bedrock aquifers shown on

this map are based upon data concerning the surface geology of Oklahoma and

the relationship of outcropping rocks to ground-water aquifers. On the accom-

panying map, those areas characterized as recharge areas include the following:

(1) outcrops of the aquifer itself, and (2) outcrops of overlying porous and per-

meable rocks that are hydraulically connected with the aquifer. Potential

where an aquifer is overlain by confining strata that may contain natural or arti-

ficial pathways that could permit downward movement of surface water to the

aquifer, and (2) additional safety zones that generally extend 4 miles beyond the

known limits of an aquifer. The safety zones extend an arbitrary, yet conserva-

recharge areas shown on the accompanying map include the following: (1) areas

pathway for surface waters locally to enter the aquifer.

care must be exercised to protect the quality of water within or flowing across the

The quality of water in an aquifer commonly is affected by the nature and

mineral content of the rock itself, because all ground waters contain various min-

erals dissolved from the rocks that the water moves over or through. The quality

of water in Oklahoma's principal bedrock aquifers is generally acceptable for most

ligrams per liter) of dissolved solids], although locally some are of poor quality

(2,000 to 6,000 mg/L dissolved solids). Water in the sand, sandstone, or limestone

aquifers typically is of good to fair quality, whereas water in gypsum aquifers and

in parts of some sandstone and limestone aquifers is of fair to poor quality.

Although poor-quality waters with 2,000 to 6,000 mg/L dissolved solids may not

be suitable for drinking purposes, they still may be well suited for irrigation and

The quantity of water produced from wells completed in the principal bedrock

aquifers is highly variable, but many wells produce from 10 to 500 gpm (gallons

per minute). Some wells completed in loosely cemented sand and gravel, or in

purposes: most of the waters are of good to fair quality [300 to 2,000 mg/L (mil-

known recharge areas.

(or) industrial purposes.

(yields generally more than 25 gpm) on the hydrologic atlases. The atlases, which

are reconnaissance studies of the water resources of Oklahoma, may be referred to

by the reader for more detailed information on the distribution and character of

the aquifers and their recharge areas, and on the quality and quantity of water

that is available from the aquifers. Mapping in the three Panhandle counties is

mainly from hydrologic atlases prepared cooperatively by the U.S. Geological

Survey and the Oklahoma Water Resources Board (see References pamphlet), and

from work done by the Oklahoma Geological Survey released as part of the

Hydrologic reports dealing specifically with the various bedrock aquifers have

been prepared mainly by the Oklahoma Water Resources Board, the U.S.

Geological Survey, and the Oklahoma Geological Survey, and these are listed as

"Other Reports" in the References pamphlet. Additional county and area reports

dealing in part with one or more of the aquifers are also included in the References

Perryton and Dalhart Sheets of the Geologic Atlas of Texas.

pamphlet as "Other Reports."